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OCL basics: Family tree example
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To exclude the bad ones, we need this OCL 
constraints:

father
Person

mother

Type graph

Context Person:

inv inheritance_bares_no_loop_mum:

self.mother->closure()->excludes(self)

inv inheritance_bares_no_loop_dad:

self.father->closure()->excludes(self)
A person cannot be its
own mother or father

… transitively.

Metamodel = 
Type graph + constraints



Schematically:
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Context Person:

inv inheritance_bares_no_loop_mum:

self.mother->closure()->excludes(self)

inv inheritance_bares_no_loop_dad:

self.father->closure()->excludes(self)

OCL Coevolution
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Employee

name:Estring
age:EInt
salary:Edouble
nameCategory:EString

Employee

Category

nameCategory:EString

1

*

name:Estring
age:EInt
salary:Edouble

category

self.nameCategory self.category.nameCategory

•More complicated example of evolution

Name change in type graph impacts OCL constraints

father
Person

mothermum

mum

Indirection inserted

What happens if the 
type model changes ?



Problem: OCL Coevolution
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OCL ?

Type graph version 1.0 Type graph version 2.0

OCL

/     ?

Usually:
•Force determinism, or
•Trace rationale behind high-level changes



Our Approach
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Additional Benefits

•Does not depend on tracing of high level changes
(tedious, error-prone)

•Search a large solution space
(chance for innovation)

•Extensible framework for new coevolution strategies
(as new mutation ops)
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Outline
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Non-dominance

Sorting

Crowding distance 

Sorting within the fronts

G1

Repeat

Heuristic Search: 
Genetic programming

Pareto 

front

until end condition is reached

Output

Non-sorting Genetic Algorithm – II (NSGA-II)



•Representation: a solution is a set of OCL constraints

•Each constraint: Ecore Abstract Syntax Tree

•In each generation, OCL evolved by crossovers and mutations

•End condition: Stabilization, at 300 iterations
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Heuristic Search: 
Genetic programming



Heuristic Objectives

1. Minimize change

•# of mutations/crossover applied from original

2. Minimize syntax error 

•# of rules fired (Not strict zero to loosen the search)

3. Minimize information loss

•# of metamodel elements removed during OCL evolution
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Genetic operators
•Solution representation and creation

•Initial generation = original set of OCL constraints

•Point-cut crossover

2
1

/1
1

/2
0

1
7

12
C1-4 

mutant

C

1-1

C

1-2

C

1-3

C

1-4

C

1-5Parent

Mutation

C

1-1

C

1-2

C

1-3

CM

1-4

C

1-5Child

: ConstraintC

X-X

Set of constraint Mutated set of constraint

C

1-1

C

1-2

C

1-3

C

1-4

C

1-5

C

2-1

C

2-2

C

2-3

C

2-4

Parent 1

Parent 2

C

1-1

C

1-2

C

1-3

C

1-4

C

1-5

C

2-1

C

2-2

C

2-3

C

2-4

Point-cut

Child 1

Child 2

Crossover

C

2-5

C

2-5

•Indirection insertion

•Change typing methode

•Mutation patterns 
•Renaming

•Context change

•Pruning



Output Set: Solutions

•NSGA-II: Multi-objective non-dominant search 

•Output: Pareto front of solutions

•No total ordering

•All solutions in the front are “equally good”

•No solution dominates

•Output can be too large to present to user

•Instead: generate recommendations
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Recommending solutions
•NSGA-II gives many solutions (Pareto front)

Which one is of user’s interest?
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Recommendations
Solutions representative 
of their cluster 
(closest to the centroid) 

Clusters

Pareto front
Centroid 
Abstract centre
of a cluster

•Ranking solutions using fitness objectives

•Clustering solutions with syntactic comparison Levenstein distance

Two strategies: 
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Evaluation

•RQ0: Are the results of our approach attributable to the 
search strategy or to the number of explored solutions?

•RQ1: To which extent our approach finds the expected 
solution?

•RQ2: To which extent our approach recommends the 
expected solution?

•Setup

•3 metamodels of different sizes (Family, State Machine, Project Management)

•30 executions for each metamodel/OCL couple

•300 iterations with a population of 100 set of constraints
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RQ0: Sanity check

•Better than random search

•Same number of solutions explored, way better results
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RQ1: Algorithm recall
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•Family and State Machine cases: solutions found 

•Project Management case contains two missing constraints that 
require particularly complex changes

•To address such changes we aim at expanding the mutation 
operator store

Family State Machine Project Management



RQ2: Recommendation system precision
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•Accuracy of the recommender grows with the number of 
recommendations

•No dramatic increase beyond 7

•Simple ranking is a better recommendation strategy 

Clustering is computationally costlier

Family State Machine Project Management



Conclusion
•Metamodel-OCL Coevolution is crucial to DSML design and 

maintenance

•Our approach

1. Multi-objective optimization problem

2. Recommendation of a subset of generated solutions

•Benefits

•Does not depend on tracing high-level changes

•Does not assume single solution

•Explores a large solution space

•Extensible with new coevolution strategies

•High recall;  Efficient ranking-based recommendation 
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