
Transformation of Models Containing
Uncertainty

Michalis Famelis, Rick Salay, Alessio Di Sandro and Marsha Chechik

University of Toronto
Toronto, Canada

{famelis,rsalay,adisandro,chechik}@cs.toronto.edu

Abstract. Model transformation techniques typically operate under the
assumption that models do not contain uncertainty. In the presence of
uncertainty, this forces modelers to either postpone working or to arti-
ficially remove it, with negative impacts on software cost and quality.
Instead, we propose a technique to adapt existing model transforma-
tions so that they can be applied to models even if they contain un-
certainty, thus enabling the use of transformations earlier. Building on
earlier work, we show how to adapt graph rewrite-based model transfor-
mations to correctly operate on May uncertainty, a technique that allows
explicit uncertainty to be expressed in any modeling language. We eval-
uate our approach on the classic Object-Relational Mapping use case,
experimenting with models of varying levels of uncertainty.

1 Introduction

Model Driven Engineering (MDE) promises to accelerate and improve the quality
of software development: software is described using high-level models which are
easy to reason with. These models are then transformed into lower-level designs
through a series of model transformations. Finally, low-level designs are used for
effective code generation.

One of the factors prevalent within software engineering is model uncertainty
which exists whenever a modeler is unsure about the information in the model.
Uncertainty stems from a variety of causes including stakeholder conflicts [16],
incomplete information [28], alternative design decisions [25], etc. Existing MDE
solutions do not handle models with uncertainty. So when uncertainty is unre-
solved, the modeler should either delay the application of transformations until
more information becomes available, or make premature resolutions in order to
apply transformations, thus creating a risk that these resolutions are incorrect.
In either case, uncertainty diminishes the benefits of MDE.

In this paper, we propose an approach that allows applying existing transfor-
mations to models containing uncertainty. The essence of the approach involves
automatically modifying – “lifting” – transformations so they operate on models
with uncertainty and correctly transform both the content of the model and the
uncertainty about it. As a result of our approach, transformations can be applied
early in the model development lifecycle, tolerating the uncertainty and allowing

Fig. 1. (a) May model M1, showing points of uncertainty. (b) M1 as a typed graph
(UML abstract syntax). (c-e) Concretizations m11,m12,m13 of M1.

modelers to defer its resolution until extra information is available. This elimi-
nates the need to delay transformation application and removes the pressure to
potentially compromise model quality by resolving the uncertainty prematurely.

Uncertainty has been studied in different contexts including requirements
engineering [6], adaptive systems [21] and software processes [13] but there has
been little work specifically on model uncertainty. To address this gap, we have
proposed a language-independent method of expressing uncertainty within mod-
els [10], through May models. May models allow a modeler to specify whether
an element should be present, or its presence is unknown. Optional May formu-
las specify constraints over presence/absense of elements, in order to disallow
infeasible or undesired uncertainty resolutions.

In this paper, we develop an approach for automatic “lifting” of transfor-
mations specified as graph rewrite rules so they apply to models containing May
uncertainty. Specifically, the paper makes the following contributions:

1. an approach for transforming models that contain uncertainty, centered
around the notion of lifting;

2. an automated method for creating lifted versions of existing transformation
rules, so that they apply to May models;

3. an application of the approach to the classic Object-Relational Mapping
(ORM) problem to assess its feasibility.

Relation to previous work. We first introduced the notion of lifting model
transformations in [11]. In that approach, lifting is accomplished purely in propo-
sitional logic, via the use of transfer predicates. Rules are first turned into “tem-
plate predicates” which, given a match in the input model, are instantiated with
the propositional variables of the input model. This approach has a number of
problems: (a) Transfer predicates need to be constructed ad-hoc, separately for
each rule. On the other hand, the lifting approach proposed in this paper can
be used for arbitrary rules. (b) Instantiation of the templates requires a-priori
knowledge of the vocabulary of the input model, making it awkward to handle
expanding/contracting vocabularies via additive/deleting rules. Instead, lifting
is not dependent on the input model or the matching site. (c) The transfer

2

predicates approach cannot handle NACs. (d) The May models resulting from
applying the transfer predicates approach are expressed as propositional formu-
las over the set of both the input and the output model variables: in effect,
the new model was expressed as a delta from the old. Thus, obtaining the new
model required quantifying the old variables out – a computationally expensive
process. (e) The transfer predicate approach requires a separate testing step to
verify that the transformation was applied correctly. Moreover, testing entails
enumerating all concretizations! Instead, the lifting presented here is guaranteed
to be correct by construction.

In [10], we studied a different form of May model transformation: uncertainty-
reducing refinement. The goal of this transformation is to reduce the number of
possible concretizations of a given model with uncertainty, by specifying ad-
ditional information. Work in [19, 18] expanded the scope of the problem to
additional uncertainty types, comprising the MAVO uncertainty framework de-
scribed in [20]. The objective of this work is different: lifted transformations do
not change the level of uncertainty by removing concretizations. Moreover, we
aim to adapt classical transformations to May models instead of developing and
checking transformations developed specifically for models with uncertainty.

The rest of this paper is organized as follows: We introduce a motivating
example in Sec. 2. In Sec. 3, we give the necessary background. We describe
the lifting process in Sec. 4 and evaluate it in Section 5. After comparing our
approach with related work in Sec. 6, we conclude in Sec. 7 with a summary and
a discussion of follow-on research.

2 Motivating Example

In this section, we introduce a running example to motivate and illustrate the
key points of our approach. Suppose a modeler is creating a UML class diagram
for an automated reasoning engine. The modeler has decided that there should
exist a class Solver which throws exceptions, objects of type SolverException,
whenever it reaches an error state. However, the modeler has yet to make the fol-
lowing design decisions: (a) whether SolverException should be an inner class
of Solver, and (b) whether SolverException should have a String attribute
called effect that would record an estimation of the effect of the exception on
the reasoning process. In addition, the modeler expects that at least one of these
features will be present in her model.

The resulting UML class diagram with uncertainty is encoded as a May model
M1 in Fig. 1(a). In this model, “⊕” is the UML symbol for a “nested class” and
used here to indicate that SolverException is an inner class of Solver. The
syntax for capturing uncertainty in M1 is described in [14]. This model has
two points of uncertainty – the relationship between the classes Solver and
SolverException (denoted by x) and the presence of the effect attribute in
class SolverException (denoted by y). Maybe elements that make up each point
of uncertainty are enclosed in dashed ellipses. To better illustrate the details of
each point of uncertainty, we show M1 as a type graph (a simplified version of the

3

Fig. 2. Transformation rule REV for doing the Encapsulate Variable refactoring.

UML abstract syntax) in Fig. 1(b). The node e and the edges sn, eo, et, en, ept
are annotated with Maybe and thus indicated using dashed lines. An additional
May formula Φ1, also shown in Fig. 1(b), constrains the possible combinations of
Maybe elements, defining the possible ways in which uncertainty can be resolved.
Specifically, each Maybe element is represented by a propositional variable of the
same name in the May formula. Thus, allowable configurations of the May model
correspond to valuations of the variables that satisfy the May formula. In our
scenario, the modeler’s uncertainty can be resolved in one of three possible ways,
corresponding to the models m11,m12,m13 shown in Figs. 1(c-e), respectively.
These models are called concretizations of M1.

Assume that the modeler notices that her model has an anti-pattern, namely,
that the attribute effect is public. She decides that, unless SolverException
is an inner class, effect should be made private for security reasons, and be
accessed through a getter method. This can be accomplished by performing the
Encapsulate Variable refactoring [3]. A generic method for implementing this
refactoring using graph transformations was described by Mens et al. [15]. A
simplified version of this rule, called REV , is shown in Fig. 2. The left-hand side
(LHS) of the rule matches a node a (and its associated edges such as ao:owner)
that represents a public attribute . The right-hand side (RHS) makes it private
(by deleting the isPublic edge apt from a to True and adding a new isPublic

edge apf from a to False). It also creates a public getter operation ge and its
associated edges. In addition, the rule has two negative application conditions
(NACs), i.e., conditions under which the rule should not be applied. These are:
NAC1, specifying the case when the class containing the public attribute is an
inner class, and NAC2, specifying the case when the class already has a getter.

Rule REV cannot be directly applied to the May model M1 because it con-
tains uncertainty. Our goal is thus to create its “lifted” version, REV that can be
applied directly to M1. The intuition behind such a lifting is as follows [11]: take
the three concretizations, m11, m12, m13, of M1; apply REV to each of them,
resulting in models m21, 22, m23 in Fig. 3(a-c); represent the resulting models as
a May model M2 in Fig. 3(d). That is, applying the lifted rule to a May model
should be equivalent to a representation of the result of applying the original
rule to each of the concretizations of the May model. So, applying the lifted
version REV of REV to M1 should produce the May model M2 directly, without
having to produce and transform individual concretizations. In this paper, we

4

Fig. 3. (a-c) Classical models resulting from applying REV to the classical models in
Fig. 1(c-e). (d) The result of applying the lifted version REV to M1 directly: the May
model M2.

use this example to describe our technique for lifting transformations expressed
as graph rewrite rules to correctly handle May models.

3 Background

In this section, we provide the background necessary for the rest of the paper
and fix the notation.

May Models. The formal definition and semantics of May models is given in
[12]. In this section, we give an informal definition and illustrate it using the
motivating example.

Definition 1 (May model) A May model M is a tuple 〈G, ann, ΦM 〉, where
G is a typed graph called a base graph, ann is a function that annotates a subset
SM of elements of G with Maybe, and ΦM is the May formula. The tuple 〈G, ann〉
representing the Maybe-annotated typed graph G is called the May graph. SM is
denotes the set of all Maybe elements of M .

The base graph is typed by a metamodel, represented by a type graph. A
simplified type graph for class diagrams is shown in Fig. 4. M1 is shown as
an instance of this type graph in Fig. 1(b) Annotating an element with Maybe
indicates the uncertainty of the modeler about whether that element should be
part of the model or not. In Fig. 1(b), Maybe-annotated elements such as the
attribute node e are shown with dashed lines.

Each Maybe element is represented by a propositional variable which ex-
presses the proposition “the element is part of the model”. The May formula is
expressed over this vocabulary of variables. Allowable configurations of Maybe
elements are thus specified by the satisfying assignments of the May formula.

Definition 2 (Concretization) A concretization of a May model 〈G, ann, ΦM 〉
is a classical model derived from M by assigning each propositional variable for

5

Fig. 4. Simple type graph for class diagrams.

a Maybe element of M to either True or False, such that ΦM is satisfied. The
set of all concretizations of a May model M is denoted by [M].

Thus, a May formula ensures that the corresponding May model is an exact
representation of a set of classical models.

[M1] = {m11,m12,m13} where the classical models m11,m12,m13 are shown
in Fig. 1(c-e). Each of them represents a case where all uncertainty is resolved,
i.e., all variables corresponding to Maybe elements have been set to either True
or False. For example, model m13 in Fig. 1(e) can be obtained by satisfying the
last disjunctive clause of Φ1, i.e., by setting sn to False and e, eo, etc. to True.

For example, consider a May model M ′
1 in which the class Solver is also

annotated with Maybe, but whose May formula is changed so that each clause
contains the non-negated term Solver. Even though Solver is annotated with
Maybe in M ′

1, all concretizations of M ′
1 must contain it and thus [M1] = [M ′

1].
We call models that have the same set of concretizations equivalent. A May
model M is said to be in the graphical reduced form (GRF) iff an element is
annotated with Maybe in the May graph iff it is not common to all of M ’s
concretizations. In [12] we give an algorithm for transforming any May model to
a GRF equivalent model. M1 is given in GRF.

Model Transformations. We focus on graph transformations [9]. Such trans-
formations apply to models that do not contain uncertainty, e.g.,m11 in Fig. 1(c).
They are implemented by executing a set of graphical rules defined as follows:

Definition 3 (Transformation rule) A transformation rule R is a tuple R =
〈{NAC},LHS,RHS〉, where the typed graphs LHS and RHS are respectively called
the left-hand and the right-hand sides of the rule, and {NAC} represents a
(potentially empty) set of typed graphs, called negative application conditions.

We show the RHS and LHS of the rule REV in Fig. 2. In addition, REV contains
two NACs (NAC1 and NAC2), indicated by a dotted border.

The LHS, RHS and NACs of a rule consist of different parts, i.e., sets of
model elements which do not necessarily form proper graphs. These parts play
different roles during the rule application:
Cr: The set of model elements that are present both in the LHS and the RHS,

i.e., remain unaffected by the rule.
Dr: The set of elements in the LHS that are absent in the RHS, i.e., deleted by

the rule.
Ar: The set of elements present in the RHS but absent in the LHS, i.e., added

by the rule.
Nr: The set of elements present in any NAC, excluding those included in Cr.

6

Fig. 5. Parts of the rule REV . Each rule part contains only those elements whose label
appears in bold serif font1.

The parts of the example rule REV from Fig. 2 are shown in Fig. 5. Specif-
ically, Cr is the set1 {a, ao, an, at, c1, ct}, Dr is the (unary) set {apt}, Ar is
{g, go, gn, gp, gt, apf}, and Nr is {g, gn, go, gt, c1n, c2}.

A rule R is applied to a model m by finding a matching site of its LHS in m:

Definition 4 (Matching site) A matching site of a transformation rule R in
a model m is a tuple K = 〈N,C,D〉, where C and D are matches of the parts
Cr and Dr of the LHS of R in m, and N is the set of all matches of NACs in
m that are anchored at the matches C and D.

For example, a matching site K1 for the rule REV in the model m11 in Fig. 1(c)
is 〈C1, N1, D1〉, where C1 = {e, eo, en, et, SolverException, String}, N1 =
{{Solver, sn}}, and D1 = {ept}.

In the above definition, N denotes the set of all matches within m of the
NACs of R. given the match of Cr and Dr. If the same NAC can match mul-
tiple ways, then all of them are included in N as separate matches. For ex-
ample, if the model in Fig. 1(c) had another class Solver2 that also nested
SolverException via an edge sn2, then N would contain two matches for NAC1:
N= {{Solver,sn},{Solver2,sn2}}. The set of matching sites define the places
in the model m where the rule can potentially be applied.

Definition 5 (Applicability condition) Given a transformation rule R, a
model m, and matching site K = 〈N, C, D〉, the rule R is applicable at K
iff N is empty2.

The above definition ensures that the rule can only be applied at a given site if
no NAC matches. For REV , the matching site K1 in m11 does not satisfy the
applicability condition as N1 6= ∅. On the other hand, the model m13 in Fig. 1(e)
contains a matching site K2 = 〈∅, C1, D1〉, which does satisfy this condition.
Then, the rule can be applied:

1 Nodes that represent values (e.g., boolean True, the string N, etc.) are also considered
to be part of Cr but are omitted here for brevity.

2 The theory of graph transformation requires some additional formal preconditions,
most notably the gluing condition [9]. These are not discussed here for brevity.

7

Definition 6 (Rule application) Given a transformation rule R, a model m,
and a matching site K in m for which the rule applicability condition is satisfied,
rule R is applied, producing a model m′, by removing D from m and adding A,
where A is a match of the part Ar of R in m. Rule application is denoted as

m
R

=⇒ m′.

Applying REV tom13 atK2 thus requires the deletion of the element ept because
it is contained in D, and the addition of new elements according to Ar. The
resulting model m23 is shown in Fig. 3(c), where A is the set {ge, go, gn, gp,
gt, epf}.

We refer to rules such as the ones described above as “classical” to differenti-
ate them from their “lifted” counterparts which can be applied to May models.

4 Lifting Transformations

In this section, we describe the process of lifting a transformation rule to apply
to May models. A classical rule R adapted to apply to May models is called
lifted and is denoted by R.

May models are intended to be exact representations of sets of models and
lifted transformations should preserve this. Therefore, applying a lifted transfor-
mation rule R to a May model Min should be equivalent to applying its classical
version R to each of the concretizations of Min and building a May model from
the result. We refer to this principle, defined in [11], as the Correctness Criterion
for lifting transformations and define it formally below.

Definition 7 Let a rule R, a May model Min with a set of concretizations

[Min] = {m1
in, . . . ,m

n
in}, and the set U = {mi

out | ∀mi
in ∈ [Min] ·mi

in
R

=⇒ mi
out}

be given. R is a correct lifting of R iff for any production Min
R

=⇒ Mout, the
set of concretizations of the resulting May model Mout satisfies the condition
[Mout] = U .

In the motivating example, we aim to compute a lifted version REV of REV s.t.

for the May models M1 and M2 in Figs. 1(a) and 3(a), M1
REV=⇒ M2.

In traditional rule application during graph transformation, it is sufficient to
find a graph match of the LHS of the rule and then check whether the NACs
are applicable. However, a May model also has a propositional component, the
May formula which constrains the possible combinations of Maybe elements.
Thus, doing the graphical match for the May graph is not sufficient to guarantee
correctness and needs to be augmented with manipulation of the May, to ensure
that the appropriate concretizations get transformed. We illustrate both parts
of the transformation on our running example in Sec. 4.1 and then generalize in
Sec. 4.2. In Sec. 4.3, we prove correctness of this approach.

8

4.1 Lifting example

We illustrate the transformation of the graph and the formula using our running
example where the rule REV in Fig. 2 is applied to the May model M1, shown in
Fig. 1(b), to produce M2 in Fig. 3(d). Fig. 6 summarizes the application of this
rule for the single existing matching site, showing the May graphs and the truth
tables of the May formulas Φ1 and Φ2 of M1 and M2, respectively. Each column
of the truth tables is a Maybe element. Each row corresponds to an allowable
configuration of Maybe elements, denoted by 1, and thus defines a concretization.
The truth tables also show which Maybe elements are matched by each of the
rule’s parts. For example, the edges eo and ept are both matched by the rule’s
LHS, where eo is found in the match C of the Cr part of the rule, and ept in
D match of Dr. Our objective is to construct the lifted transformation REV
that produces M2 when applied to M1. We begin by constructing the graphical
part of REV first, followed by the propositional part.

Graphical part. Consider applying REV to M1 by directly applying it to Mb,
M1’s base graph. Clearly, this approach does not produce the correct outcome.
First, NAC1 matches in Mb and thus the rule does not apply at all! Yet, there
exists a concretization of M1, m13, for which neither of REV ’s NACs match and
thus REV should be applicable. We therefore expect it to be applicable to M1 as
well. Second, the RHS of the rule does not specify which elements in the output
model should become Maybe, whereas M2 clearly has them.

Thus, the classical strategy for rule application is not sufficient and needs
to be augmented by the uncertainty in the model, i.e., the Maybe annotations
of its elements. The presence of Maybe elements in the match of NAC1 and in
the match of the LHS of REV are both indications that REV applies to some
concretizations but not others. We thus need to change the May model M1 so
that it represents both those concretizations that are unchanged by REV and
those where the rule has been applied. Applying REV to a concretization of
M1 entails (1) deleting the edge ept, because it is included in the match D of
Dr, and (2) adding the elements of A: ge, gn, go, gt, gp, and epf. However,
we cannot altogether delete ept from M1 because it should still remain in the
unchanged concretization m11. Instead, we must keep it annotated with Maybe
to indicate that it is part of some concretizations but not others. Similarly, the
newly added elements should be annotated with Maybe to indicate that they are
added in m13 but not M11 or m12.

We summarize the application of the graphical part of REV to M1 as follows:
(a) Apply REV to the base graph Mb of M1 even though NAC1 matches because
the match contains a Maybe element. (b) Include both D and A in the base graph
of M2 and annotate all of their elements with Maybe because the match of the
LHS in M1 contains a Maybe element.

Propositional part. We now define the propositional part of REV that trans-
forms the May formula Φ1 of M1 into Φ2 of M2. We achieve this by defining an
operation on Φ1 that has the effect of transforming the truth table of Φ1 into the
truth table of Φ2. First note that the truth tables can be split into two parts:

9

Φ1:

N C D
sn e eo et en ept

Φnchg
m11 1 1 1 1 1 1
m12 1 0 0 0 0 0

Φchg m13 0 1 1 1 1 1

N= {NAC1}, LHS=C∪D

Φ2:

N C D A
sn e eo et en ept epf ge go gt gp gn

m21 1 1 1 1 1 1 0 0 0 0 0 0
m22 1 0 0 0 0 0 0 0 0 0 0 0

m23 0 1 1 1 1 0 1 1 1 1 1 1

legend: added unmodified modified

Fig. 6. Applying the lifted version of REV to the motivating example. Left: input
model M1, May graph and truth table of the May formula. Right: output model M2,
May graph and truth table of the May formula.

(a) The concretizations where REV does not apply (i.e., m11 and m12). The
corresponding rows m21 and m22 in Φ2 remain unchanged, and the variables
in A are set to False (denoted by 0) to indicate that Ar is not added. We
denote the formula representing the unchanged part by Φnchg.

(b) The concretizations where REV does apply (i.e., m13). The corresponding
row m23 has the variables of D set to 0 to indicate that Dr is deleted and the
variables of A set to 1 to indicate that Ar is added. We denote the formula
representing the changed part by Φchg.

Thus, Φ2 = Φnchg ∨ Φchg.
To obtain the unchanged part, we begin by specifying a condition, over el-

ements of M1, under which the rule REV applies, i.e., when its NAC Nr does
not match in Mb and both Cr and Dr do match: Φapply = ¬φandN ∧ φandC ∧ φandD .
Let φandX where X ∈ {N,C,D} denote the conjunction of all variables in X that
represent elements that are Maybe. Restricting Φ1 to those concretizations of M1

where REV does not apply (¬Φapply) and forcing the variables of A to become
False produces the unchanged part: Φnchg = (Φ1 ∧ ¬Φapply) ∧ ¬φorA , where φorA
indicates the disjunction of all variables in A that represent elements that are
Maybe.

For the changed part Φchg, we restrict Φ1 to those concretizations ofM1 where
REV does apply and force the variables of D to become False and those of A to
become True: Φchg = (Φ1 ∧ Φapply)|∃D ∧ ¬φorD ∧ φandA . Here, (Φ1 ∧ Φapply)|∃D
indicates existential quantification of all variables in D that occur in formula
Φ1∧Φapply. In our example, D = {ept}, so it becomes (Φ1∧Φapply)|ept=T ∨(Φ1∧
Φapply)|ept=F . That is, we eliminate each variable in D from Φ1∧Φapply by taking
the disjunction of the cases where it is set to False and to True. Quantifying out
variables in D is done before forcing them to become False (using ¬φorD) because
we are changing the values of existing variables (the variables of D already

10

occur in Φapply) and not just setting the value for new variables as we are for A.
Otherwise, we get an inconsistency because Φapply ⇒ φandD by definition.

Substituting the variables from the example and simplifying gives:

Φnchg =(sn ∧ e ∧ eo ∧ et ∧ en ∧ ept ∧ ¬epf ∧ ¬ge ∧ ¬go ∧ ¬gt ∧ ¬gt ∧ ¬gp ∧ ¬gn)∨
(sn ∧ ¬e ∧ ¬eo ∧ ¬et ∧ ¬en ∧ ¬ept ∧ ¬epf ∧ ¬ge ∧ ¬go ∧ ¬gt ∧ ¬gt ∧ ¬gp ∧ ¬gn)

Φchg =(¬sn ∧ e ∧ eo ∧ et ∧ en ∧ ¬ept ∧ epf ∧ ge ∧ go ∧ gt ∧ gt ∧ gp ∧ gn)

The resulting formula Φ2 = Φnchg ∨ Φchg is the same as the May formula in
Fig. 3(d) and has the same truth table as the one shown in Fig. 6.

4.2 General case

We can generalize the above process to an arbitrary rule R and define how the
graphical part of its lifted version R is applied to a May model M to produce a
May model M ′. As with the running example, we define this in terms of applying
R to the base graph of M and then making modifications. Following Definition 4,
the matching site for R is a matching site for R in the base graph of M .

Definition 8 (Lifted rule applicability conditions) Given a May model M
with a May formula ΦM , a transformation rule R = 〈{NAC},LHS,RHS〉, and a
matching site K = 〈N,C,D〉, the lifted rule R is applicable at K iff the following
conditions hold:
1. For all N ∈ N, N contains a Maybe element
2. ΦM ∧ Φapply is satisfiable, where Φapply = ¬

∨
{φN |N ∈N} ∧ φandC ∧ φandD .

In this definition, Condition 1 ensures that there is no NAC match without
Maybe elements; otherwise the NAC match would necessarily occur in every
concretization and so R would not apply to any concretization of M . Condition
2 uses the constraints in the May formula to ensure that at this matching site,
the rule R matches in at least one concretization of M . Specifically, this checks
that there exists a concretization in which all f the Maybe elements of C and
D are True and not all of the Maybe elements in any NAC match are set to True.

We now give the general definition of a rule application for a lifted rule.

Definition 9 (Lifted rule application) Given a May model M with a May
formula ΦM , a transformation rule R = 〈{NAC},LHS,RHS〉 and matching site
K = 〈N, C, D〉 in M for which the rule applicability conditions are satisfied,
the lifted rule R is applied to produce a May model M ′ as follows:
1. if K contains no Maybe elements, apply R in the classical way to produce

the base graph of M ′ and set φM ′ = φM .
2. otherwise,

(a) set M ′ = M ;
(b) add the elements A of the Ar part of the RHS to M ′;
(c) annotate all elements of A and D with Maybe;
(d) set ΦM ′ = [(ΦM ∧ ¬Φapply) ∧ ¬φorA] ∨ [(ΦM ∧ Φapply)|∃D ∧ ¬φorD ∧ φandA].

11

In this definition, Case 1 captures the situation when there are no Maybe ele-
ments at the matching site and so the rule can be applied in the classical way
and the May model is unaffected. Case 2 captures the situation when there are
Maybe elements in parts of the matching site so that R may apply in some
concretizations but not in others. This case mirrors the discussion of REV in
Section 4.1. In particular, in the graphical part, Dr is not deleted (step a) but
Ar is still added (step b) and all of the elements in A and D are set to Maybe
(step c). The propositional part (step d) is the same as for the REV example
except that Φnchg and Φchg are inlined and the more general case of N is used
in Φapply (from Definition 8) to account for multiple NAC matches that could
exist in the base graph of M .

As with a classical rule system, lifted rules continue to be applied until no
rule is applicable. Note that the resulting model M ′ may not necessarily be in
GRF after every rule application. That is, M ′ can contain redundant Maybe
elements. If M ′ is intended for human consumption (as opposed to automated
reasoning) then the additional step of putting it into GRF is advisable. However,
this step is optional since it does not affect the set of concretizations that the
May model represents.

4.3 Analysis

In this section, we discuss some key properties of lifted rules such as their cor-
rectness, termination and confluence. The resulting properties apply to arbitrary
transformations being lifted, whether they are injective, endogenous, exogenous
and so on.

Correctness. We now show that lifting described by Definitions 8 and 9 satisfies
the correctness condition in Definition 7. Specifically, we show that if a lifted
rule R is applied to a May model M to produce a May model M ′, then the
concretizations of M ′ must be exactly the set obtained by applying the classical
rule R to each concretization of M . We focus our argument on a specific matching
site K = 〈N, C, D〉 since by transitivity, if the rule is correct when applied to
each site, then the application to any sequence of sites is also correct.

We begin with checking correctness of the applicability condition (Defini-
tion 8) of the lifted rule R: whenever R is applicable for some concretization of
M at K, then R is also applicable, i.e., R it does not miss any sites where a
concretization can be affected by R. By Condition 1 of Definition 8, if there is
a NAC in N that has no Maybe elements then R does not apply at K. But a
NAC without Maybe in the base graph of M means that this NAC appears in
every concretization of M and thus the classical rule R does not apply to any
concretization either and thus applying the lifted rule does not miss any classical
rule applications.

Condition 2 says that ΦM ∧ Φapply must be satisfiable for R to apply, which
happens iff there exists a concretization of M where Cr and Dr are present and
no NAC in N is present – exactly the classical applicability condition in Defini-

12

tion 5. If this condition does not hold, there are no classical rule applications in
any concretization, therefore the lifted rule applicability condition is correct.

We now argue that the lifted rule application in Definition 9 is correct. To do
this, we show that ifR satisfies the applicability conditions, then applyingR at a
site K has the same effect as applying R at K in each concretization. Case 1 says
that when K contains no Maybe elements, we apply the rule classically to the
base graph of M . Without Maybe elements, K occurs in every concretization of
M and so the classical application of R in every concretization would be identical
to applying R.

Case 2 applies when K has some Maybe elements. In this case, the concretiza-
tions are split into those where R does not apply and those where it does. We
then aim to show that the steps (a-d) for constructing the graphical and propo-
sitional effect of applying R are “correct by construction”. We do not repeat this
argument, described in Sec. 4.1, here, for brevity. Thus, we conclude that the
lifted rule application is also correct. Since both the applicability condition and
the effect of application are correct, we conclude that R satisfies the specification
of correct lifting in Definition 7.

Termination. To prove termination, we show that if an application of a set of
classical rules on an input model always terminates than so does the set of the
corresponding lifted rules. Without loss of generality, we restrict ourselves to a
rule set containing a single classical rule R which we assume is terminating. Since
R is correct according to Definition 7, repeatedly applying it to a May model M
has the same effect as repeatedly applying R to each concretization of M . Since
R is terminating, it eventually is no longer applicable to any concretization
of M . At this point, Φapply which encodes classical applicability is False and
thus ΦM ∧ Φapply is not satisfiable, and, by Condition 2 of Definition 8, R does
not apply. Thus, when the application of R terminates, the application of R
terminates as well. Therefore, if R is terminating, so is R.

Confluence. We argue that if a set of classical rules is confluent then the corre-
sponding set of lifted rules is also confluent “up to an equivalence”, that is, when
the process terminates, the resulting May model has the same set of concretiza-
tions, regardless of the order in which the rules have been applied. Repeatedly
applying lifted rules to a May model M has the same effect as repeatedly ap-
plying the corresponding classical rules to each concretization of M . Since the
classical rules are confluent and terminating, the process over lifted rules reaches
the same final set of concretizations. Thus, the lifted rule set is confluent “up to
an equivalence”.

5 Evaluation

We applied our lifting approach to the problem of mapping simple UML class dia-
grams to relational database schemas. This problem is called “Object-Relational
Mapping” (ORM) and is often used as a benchmark for model transforma-
tions [2]. Our aim was to gather evidence about how the lifting approach scales as

13

Table 1. Results of applying the ORM rules to the Ecore metamodel.

Number of concretizations: 1 24 48 108 144 192 256

Number of Maybe elements: 0 5 6 8 10 12 14

Time (sec): 32.6 32.8 32.7 32.9 32.6 33.0 48.4

Size of May formula (KiB): 0 27.9 14.0 1,080.9 1,153.4 19,361.9 320,570.7

uncertainty increases. We thus measured the runtime of performing ORM with
lifted rules while increasing levels of uncertainty and compared it with the base-
line runtime of performing ORM for a classical model. The ORM transformation
rules we used came from [26] and consist of 5 layered transformation rules that,
given a class diagram, create a relational schema and traceability links.

We used the class diagram specification of the Ecore metamodel [24] as in-
put to the ORM rules. Serializing Ecore models in a database is an important
technical problem that has resulted in the establishment of two Eclipse projects,
CDO [7] and Teneo [8], both of which implement ORM for Ecore. We manu-
ally flattened the Ecore metamodel and adapted it to the type graph used by
the ORM rules in [26]. The resulting model consisted of 65 model elements: 17
classes, 17 associations, 6 generalization links and 25 attributes. Starting with a
May model with a single concretization (no uncertainty), we gradually increased
the degree of uncertainty by adding more concretizations, by a step of roughly
50, thus creating models with 1, 24, 48, 108, 144, 192, and 256 concretizations.
To accomplish that we incrementally injected points of uncertainty, annotating
elements with Maybe and creating the corresponding May formulas. The most
uncertain case (256 concretizations) contained 8 points of uncertainty, expressed
across a total of 14 Maybe elements.

We implemented the lifting of the ORM rules using Henshin [1]. For the
satisfiability check required in Definition 8, we used the Z3 SMT solver [5]. We
used the Model Management Tool Framework [17] as the integration platform.
We executed the case study on a computer with Intel Core i7-2600 3.40GHz×4
cores (8 logical) and 8GB RAM, running Ubuntu-64 12.10. We applied the set
of lifted rules to each input May model and recorded the total runtime and the
size of the resulting May formula. Our observations are shown in Table 1.

The results show that the total runtime remains almost constant at roughly
32.8 seconds, except for the largest category where it increases to 48.4 seconds.
On the other hand, we see a dramatic increase in the size of the May formula,
from 27.9 KiB for the smallest category, to approx. 320.6 MiB for the largest.
This exponential growth in size is reasonable, given (Definition 9). Overall, the
results suggest that lifting scales reasonably with respect to time, whereas the
increasing size of the May formula may be a problem. However, we note that
our implementation did not attempt to incorporate any formula simplification
heuristics, and therefore there is room for optimization.

14

6 Related Work

The notion of uncertainty addressed by May models captures the scenario of
having multiple possible alternative design solutions, with the modeler being
unsure about which one to pick. Discussion of work related to representing sets
of models is out of scope of the current paper; a thorough comparison of May
models with related formalisms can be found in [12]. May models encode a set of
classical models, and lifted rules are rules that can transform entire sets of models
simultaneously. In the following, we discuss work related to transformations that
apply to modeling formalisms that represent sets of models.

Different variants of feature models have been proposed in the literature to
encode a set of possible configurations of a software product line [22]. Transfor-
mations of feature models, i.e., the creation of a feature model representing a
subset of the original, have been studied in [4] under the name of feature model
specialization. This process is described as a series of operations such as “fea-
ture cloning” and “reference unfolding” and resembles the uncertainty-reducing
transformation of [10]. Graph transformations have also been applied to feature
models, e.g., in [23], they are used to refactor product lines via feature model
merging. Transformations that apply to metamodel definitions also transform
sets of models, i.e., the set of possible instances of the metamodel. The Object-
to-Relational Mapping transformation [26] in Sec. 6 is one such example. Sim-
ilarly, special purpose transformation languages have been built to transform
ontologies, such as a rule based language based on xOWL [27].

The main difference between these transformations and the lifting approach
presented here is that they are tailored to specific tasks, whereas lifting applies to
arbitrary transformation rules. Moreover, these techniques only indirectly affect
the classical models (e.g., variants or instances) represented by the abstraction
formalism. On the other hand, lifted transformations match and transform the
alternatives directly, via the propositional part of the lifted rules.

7 Conclusion

In this paper, we have shown how to adapt existing model transformations to
May models, a formalism that allows uncertainty to be explicated in software
artifacts. To achieve this, we have introduced the process of lifting graph transfor-
mation rules and proved its correctness of application to May models. We have
implemented our approach and applied it to the Object-Relational Mapping
benchmark. Our experience showed that the overhead of applying lifted trans-
formations is reasonable, so we feel that the approach is feasible for transforming
realistic models with uncertainty. In the future, we are planning to implement
lifting as a higher-order transformation (HOT). We expect the approach to lift a
classical rule to a layered graph grammar of classical rules, allowing us to imple-
ment a dedicated tool by reusing existing graph grammar implementations such
as Henshin [1]. We also intend to evaluate our approach further and expand our
lifting technique to models containing other types of uncertainty [20].

15

References

1. T. Arendt, E. Biermann, S. Jurack, C. Krause, and G Taentzer. “Henshin: ad-
vanced concepts and tools for in-place EMF model transformations”. In Proc. of
MODELS’10, pages 121–135, 2010.

2. J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt. “Proceedings of the Model Trans-
formations in Practice Workshop”. In Satellite Events at the MoDELS 2005 Con-
ference, 2006.

3. E. Casais. “The Automatic Reorganization of Object Oriented Hierarchies – A
Case Study”. Object Oriented Systems, 1:95–115, 1994.

4. K. Czarnecki, S. Helsen, and U. Eisenecher. “Staged Configuration Using Feature
Models”. In Proc. of SPLC’04, pages 266–283, 2004.

5. L. De Moura and N. Bjørner. “Satisfiability Modulo Theories: Introduction and
Applications”. Commun. ACM, 54(9):69–77, September 2011.

6. C. Ebert and J. De Man. “Requirements Uncertainty: Influencing Factors and
Concrete Improvements”. In Proc. of ICSE’05, pages 553–560, 2005.

7. Eclipse. CDO website: http://www.eclipse.org/cdo/, accessed 2013-03-16.

8. Eclipse. Teneo website: http://wiki.eclipse.org/Teneo/, accessed 2013-03-16.

9. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Se-
ries). Springer, 1 edition, 2006.

10. M. Famelis, M. Chechik, and R. Salay. “Partial Models: Towards Modeling and
Reasoning with Uncertainty”. In Proc. of ICSE’12, 2012.

11. M. Famelis, M. Chechik, and R. Salay. “The Semantics of Partial Model Transfor-
mations”. In Proc. of MiSE’12, 2012.

12. M. Famelis, M. Chechik, and R. Salay. “Towards Modeling and Reasoning with
Uncertainty”, 2013. Submitted.

13. H. Ibrahim, B. H. Far, A. Eberlein, and Y. Daradkeh. “Uncertainty Management
in Software Engineering: Past, Present, and Future”. In Proc. of CCECE’09, pages
7–12, 2009.

14. M. Famelis and S. Santosa. “MAV-Vis: a Notation for Model Uncertainty”. In
Proc. of MiSE’13, 2013.

15. T. Mens, N. Van Eetvelde, S. Demeyer, and D Janssens. “Formalizing Refactorings
with Graph Transformations”. Journal of Software Maintenance and Evolution:
Research and Practice, 17(4):247–276, 2005.

16. M. Sabetzadeh, S. Nejati, M. Chechik, and S. Easterbrook. “Reasoning about
Consistency in Model Merging”. In Proc. LWI’10, 2010.

17. R. Salay, M. Chechik, S. Easterbrook, Z. Diskin, P. McCormick, S. Nejati, M. Sa-
betzadeh, and P. Viriyakattiyaporn. “An Eclipse-Based Tool Framework for Soft-
ware Model Management”. In Proc. of Eclipse’07, pages 55–59, 2007.

18. R. Salay, M. Chechik, M. Famelis, and J. Gorzny. “Verification of Uncertainty
Reducing Model Transformations”, 2013. Submitted.

19. R. Salay, M. Chechik, and J. Gorzny. “Towards a Methodology for Verifying Partial
Model Refinements”. In Proc. of VOLT’12, 2012.

20. R. Salay, M. Famelis, and M. Chechik. “Language Independent Refinement using
Partial Modeling”. In Proc. of FASE’12, 2012.

21. P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. “Requirements-
Aware Systems: A Research Agenda for RE for Self-adaptive Systems”. In Proc.
of RE’10, pages 95–103, 2010.

16

22. P.Y. Schobbens, P. Heymans, and J.C. Trigaux. “Feature diagrams: A survey and
a formal semantics”. In Proc. of RE’06, pages 139–148, 2006.

23. S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Generative and Trans-
formational Techniques in Software Engineering II. chapter Automated Merging
of Feature Models Using Graph Transformations, pages 489–505. 2008.

24. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework. Addison-Wesley, 2. edition, 2009.

25. A. van Lamsweerde. Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley, 2009.

26. D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G. Taentzer. “Termination
Analysis of Model Transformations by Petri Nets”. In Proc. of ICGT’06, pages
260–274, 2006.

27. L. Wouters and M.P. Gervais. “Ontology Transformations”. In Proc of EDOC’12,
pages 71–80, 2012.

28. H. Ziv, D.J. Richardson, and R. Klösch. “The Uncertainty Principle in Software
Engineering”, 1996. unpublished.

17

